drukowana A5
19.78
Badanie ciał radioaktywnych

Bezpłatny fragment - Badanie ciał radioaktywnych

Objętość:
85 str.
Blok tekstowy:
papier offsetowy 90 g/m2, styly
Format:
145 × 205 mm
Okładka:
miękka
Rodzaj oprawy:
blok klejony
ISBN:
978-83-288-0926-0

Wstęp

Celem niniejszej rozprawy jest opisanie poszukiwań, które prowadzę od lat przeszło pięciu nad substancjami promieniotwórczymi. Badania te rozpoczęłam od studyów nad promieniowaniem uranowym, odkrytym przez p. Becquerela. Okazało się, że wyniki, do jakich mnie ta praca doprowadziła, odsłaniają widoki tak ciekawe, że pan Curie, odstępując od swych robót, będących w biegu, przyłączył się do mnie i odtąd wspólne nasze usiłowania skierowaliśmy ku wydobyciu nowych ciał promieniotwórczych i ich zbadaniu.

Od początku naszych doświadczeń uważaliśmy za rzecz właściwą udzielać próbek ciał przez nas odkrytych i otrzymanych kilku fizykom, a przede wszystkim p. Becquerelowi, któremu zawdzięczamy odkrycie promieni uranowych. W taki sposób ułatwialiśmy innym badania nad nowymi ciałami promieniotwórczymi. W następstwie pierwszych naszych publikacji p. Giesel w Niemczech zaczął również przygotowywać te ciała i udzielił ich próbek kilku uczonym niemieckim. Następnie przetwory te ukazały się w sprzedaży we Francji i w Niemczech i sprawa, przybierając coraz to większe znaczenie, stała się punktem wyjścia ruchu naukowego, tak że — zwłaszcza poza Francją — ukazały się i ukazują nieustannie liczne komunikaty o ciałach radioaktywnych. Wyniki tych różnych badań francuskich i zagranicznych z konieczności są jeszcze zagmatwane, jak to bywa zawsze z przedmiotem badańnowym i pozostającym jeszcze w opracowaniu. Stan kwestii zmienia się, można powiedzieć, z dnia na dzień.

Jednakże z punktu widzenia chemicznego jest jedna rzecz udowodniona w sposób niezbity, to jest istnienie nowego pierwiastku w wysokim stopniu promieniotwórczego — radu. Przygotowanie czystego chlorku radu i oznaczenie ciężaru atomowego samego radu stanowi część najważniejszą mojej pracy osobistej. Do szeregu dokładnie poznanych pierwiastków chemicznych praca ta dorzuciła nowe ciało proste z własnościami bardzo ciekawymi, a jednocześnie ustaliła i uzasadniła nową metodę poszukiwań chemicznych. Metoda, o której mówię, oparta na promieniotwórczości uważanej za własność atomów materii, pozwoliła właśnie p. Curiemu i mnie odkryć istnienie radu.

O ile zadanie, pierwotnie przez nas podjęte, możemy uznać za rozwiązane z punktu widzenia chemicznego, badanie własności fizycznych ciał promieniotwórczych znajduje się w pełnym rozwoju. Pewne szczegóły ważne są już ustalone, lecz znaczna liczba wniosków ma jeszcze dotąd cechy tymczasowości. Nic w tym dziwnego, jeżeli zwrócimy uwagę na zawiłość zjawisk, którym promieniotwórczość daje początek, i na różnice we własnościach rozmaitych ciał radioaktywnych. Badania różnych fizyków, którzy studiują te ciała, spotykają się ze sobą i krzyżują nieustannie. Mając ustawicznie na widoku cel właściwy niniejszej rozprawy i opisując przede wszystkim własne swoje poszukiwania, musiałam jednak współcześnie wzmiankować i o rezultatach prac innych, których znajomość jest niezbędna.

Pragnęłam nadto z rozprawy tej uczynić rzecz ogólniejszą, obejmującą całkowity stan współczesny przedmiotu.

W ciągu rozprawy wyszczególniam kwestie, któremi sama zajmowałam się specjalnie, oraz te, które badałam wspólnie z p. Curie.

Roboty swoje przeprowadziłam w pracowniach Szkoły Fizyki i Chemii stosowanej (Ecole de Physique et de Chimie industrielles) miasta Paryża za zezwoleniem Schützenbergera, nieodżałowanego dyrektora tej Szkoły, i p. Lautha, dyrektora obecnego. Miło mi wyrazić na tym miejscu wdzięczność za uprzejmą gościnność, jaka mnie spotykała w tej Szkole.

Część historyczna

Odkrycie zjawisk radioaktywności jest związane z poszukiwaniami prowadzonymi od czasu odkrycia promieni Röntgena, a dotyczącemi działań fotograficznych ciał fosforyzujących i fluoryzujących.

Pierwsze rurki wytwarzające promienie röntgenowskie nie posiadały antykatody metalicznej. Źródło promieni Röntgena znajdowało się w ścianie szklanej, uderzanej przez promienie katodalne. Ścianka ta jednocześnie fluoryzowała bardzo silnie. Można więc było przypuszczać, że emisja promieni röntgenowskich nieodłącznie towarzyszy fluorescencji, powstającej pod jakimbądź wpływem. Myśl tę powziął pierwszy p. Henryk Poincaré.

Wkrótce potem p. Henry doniósł, że otrzymał obrazy fotograficzne pod działaniem siarczku cynku fosforyzującego przez papier czarny. P. Niewęgłowski wywołał to samo zjawisko siarczkiem wapnia, który poprzednio był wystawiony na działanie światła. Na koniec p. Troost otrzymał silne obrazy fotograficzne, działając sztucznie otrzymaną blendą heksagonalną fosforyzującą poprzez papier czarny i grubą tekturę.

Przytoczone powyżej doświadczenia nie mogły być powtórzone, pomimo wielu w tym kierunku usiłowań. Niepodobna więc żadną miarą uznać za rzecz dowiedzioną, że siarczek cynku i siarczek wapnia pod wpływem światła wysyłają promienie niewidzialne, które mogą przechodzić przez papier czarny i działać na płytę fotograficzną.

P. Becquerel wykonywał doświadczenia podobne z solami uranu, z których pewna część okazywała fluorescencję. Otrzymał on obrazy fotograficzne przez papier czarny, używając siarczanu uranylowo-potasowego. P. Becquerel sądził zrazu, że ta sól, która posiada fluorescencję, zachowuje się tak jak siarczek cynku i siarczek wapnia w doświadczeniach panów Henry'ego, Niewęgłowskiego i Troosta. Ale dalszy bieg doświadczeńprzekonał go, że zjawisko uważane nie ma żadnego związku z fluorescencją. Nie ma konieczności, żeby sól była naświetlona, a, co więcej, uran i wszystkie jego połączenia działają w jednakowy sposób, a uran metaliczny jest najbardziej czynny. P. Becquerel spostrzegł następnie, że związki uranowe, pomimo przechowywania ich w całkowitej ciemności, zachowują własność działania na płyty fotograficzne przez papier czarny w ciągu lat całych. P. Becquerel przyjął, że uran i jego związki wysyłają szczególniejsze promienie: promienie uranowe. Dowiódł, że promienie te mogą przechodzić przez cienkie zasłony metalowe i że wyładowują ciała naelektryzowane. Poczynił też doświadczenia, z których wywnioskował, że promienie uranowe ulegają załamaniu, odbiciu i polaryzacji.

Badania innych fizyków (Elstera i Geitla, lorda Kelwina, Schmidta, Rutherforda, Beattiego i Smoluchowskiego) potwierdziły i rozszerzyły wyniki poszukiwań p. Becquerela za wyjątkiem odbicia, załamania i polaryzacji promieni uranowych, które zachowują się w tym względzie jako promienie röntgenowskie, co przede wszystkim zostało wykazane przez p. Rutherforda, a następnie i przez samego p. Becquerela.

Rozdział I. Promieniotwórczość uranu i toru. Minerały promieniotwórcze

Promienie Becquerela. Promienie uranowe, odkryte przez p. Becquerela, działają na płytę fotograficzną bez dostępu światła; mogą przenikać przez wszelkie ciała stałe, ciekłe i gazowe, o ile ich warstwajest odpowiednio cienka; przechodząc przez gazy, nadają im własność przewodzenia elektryczności w stopniu słabym.

Własności powyższe związków uranowych nie są zależne od żadnego bodźca znanego. Promieniowanie zdaje się być samoistnym; natężenie jego nie zmniejsza się bynajmniej, jeżeli związki uranu są przez całe lata przechowywane w zupełnej ciemności; zjawisko nie jest więc wcale jakąś fosforesceneją szczególną, wzbudzoną przez światło.

Samoistność i trwałość promieniowania uranowego stanowią zjawisko fizyczne nader osobliwe. P. Becquerel przechowywał w ciemności kawałek uranu przez lat kilka i przekonał się, że po upływie tego czasu działanie na płytkę fotograficzną nie zmieniło się w sposób dający się dostrzec. Pp. Elster i Geitel wykonali doświadczenie podobne i przekonali się również, że działanie jest stałe.

Natężenie promieniowania uranu mierzyłam, korzystając z działania tego promieniowania na przewodnictwo elektryczne powietrza. Otrzymałam w taki sposób liczby, które stwierdzają stałość promieniowania w granicach dokładności doświadczeń, to jest aż do 2 lub 3 mniej więcej odsetek.

Do pomiarów tych była używana płytka metaliczna, pokryta warstwą uranu sproszkowanego; płytki tej nie przechowywano w ciemności, gdyż warunek ten, według spostrzegaczy wyżej przytoczonych, nie ma znaczenia. Liczba pomiarów wykonanych z tą płytką jest bardzo wielka i obecnie odnoszą się one do okresu czasu wynoszącego już pięć lat.

Były czynione poszukiwania, mające na celu dowiedzieć się, czy i inne ciała mogą działać tak, jak związki uranowe. P. Schmidt pierwszy ogłosił, że tę właściwość posiada również tor i jego związki. Przeprowadzone jednocześnie odpowiednie badania i mnie także dały wynik takiż sam. Ogłosiłam to spostrzeżenie, nie znając jeszcze komunikatu p. Schmidta.

Mówimy, że uran, tor i ich związki wysyłają promienie Becquerela. Ciała, które są źródłem emisji tego rodzaju, nazwałam radioaktywnymi (promieniotwórczymi) i nazwa ta odtąd została przyjęta ogólnie.

Promienie Becquerela przez swoje działanie fotograficzne i elektryczne zbliżają się do promieni Röntgena. Mają też, na równi z tymi ostatnimi, zdolność przenikania wszelkich substancji . Różnią się jednak bardzo pod względem siły przenikania: promienie uranowe i torowe zostają powstrzymane po przebyciu drogi wynoszącej kilka milimetrów w materiistałej, a w powietrzu przebyć nie mogą odległości większej nad kilka centymetrów; tak jest przynajmniej dla znaczniejszej części promieniowania.

Badania różnych fizyków, a przed innymi p. Rutherforda, dowiodły, że promienie Becquerela nie ulegają ani prawidłowemu odbiciu, ani załamaniu, ani polaryzacji.

Słaba zdolność przenikania promieni uranu i toru zbliżałaby je raczej do promieni wtórnych, które są wytwarzane przez promienie Röntgena, a których badaniem zajął się p. Sagnac, aniżeli do samych promieni Röntgena.

Z drugiej strony można by poszukiwać zbliżenia pomiędzy promieniami becquerelowskimi a promieniami katodalnymi rozchodzącemi się w powietrzu (promienie Lenarda). Wiadomo nam dzisiaj, że różne te zbliżenia są wszystkie uprawnione.

Mierzenie natężenia promieniowania. Metoda używana w tym celu polega na mierzeniu przewodnictwa nabytego przez powietrze pod wpływem ciał promieniotwórczych; metoda, o której mowa, posiada tę zaletę, że jest pośpieszna i dostarcza liczbodpowiednich do porównywania między sobą. Przyrząd używany przeze mnie w tym celu, składa się głównie z kondensatorao dwu talerzach AB (fig. 1). Substancja czynna, drobno sproszkowana, jest umieszczona na talerzu B; nadaje ona własność przewodzenia warstwie powietrza pomiędzy talerzami. Chcąc zmierzyć przewodnictwo, doprowadzamy talerz B do wysokiego potencjału, łącząc go z jednym z biegunów baterii małych akumulatorów P, której biegun drugi jest połączony z ziemią, zatem pomiędzy tymi talerzami wytwarza się prąd elektryczny. Potencjał talerza A jest wskazywany przez elektrometr E. Jeżeli zerwiemy połączenie z ziemią w punkcie C, talerz A ładuje się, a ładunek jego odchyla elektrometr. Szybkość tego odchylenia jest proporcjonalna do siły prądu i może służyć do jej mierzenia.

Lepiej jednak dokonywać tego pomiaru, kompensując ładunek talerza A tak, żeby elektrometr pozostawał na punkcie zero. Ładunki, o które tu idzie, są nadzwyczaj słabe; mogą one być kompensowane za pomocą kwarcu piezoelektrycznego Q, którego jedno uzbrojenie jest złączone z talerzem A, drugie zaś — z ziemią. Blaszkę kwarcową poddajemy wyciąganiu, którego wielkość jest znana i oznaczona przez ciężarki, umieszczane na talerzyku Π; obciążenia dokonywa się stopniowo, a następstwem tego jest stopniowe wytworzenie pewnej znanej ilości elektryczności w ciągu czasu, który mierzymy. Czynność tę możemy regulować w taki sposób, żeby ilość elektryczności przechodząca przez kondensator i ilość elektryczności ze znakiem przeciwnym, dostarczana przez kwarc, równoważyły się między sobą w każdej chwili. Można także mierzyć w wartościach bezwzględnych ilość elektryczności, przechodzącą w pewnym czasie przez kondensator, to jest mierzyć siłę prądu. Pomiary są tu niezależne od czułości elektrometru.

Wykonywając szereg pomiarów tego rodzaju, przekonywamy się, żeradioaktywność jest zjawiskiem, które można mierzyć z pewną dokładnością. Mało zmienia się ona z temperaturą, a wahania w stanie ciepła środowiska otaczającego prawie nie wywierają na nią wpływu; stopień oświetlenia substancji czynnej nie ma żadnego znaczenia. Natężenie prądu przepływającego przez kondensator wzrasta razem z powierzchnią talerzy. Dla danego przyrządu i danej substancji prąd wzrasta odpowiednio do różnicy potencjału na dwu talerzach, do ciśnienia gazu napełniającego kondensator i do odległości talerzy (pod warunkiem, żeby ta odległość nie była zbyt wielka w stosunku do średnicy). W każdym razie, wobec dużych różnic potencjału prąd dąży do pewnej wartości granicznej, która, praktycznie biorąc, jest wartością stałą. Nazywamy ją prądem nasyconym, albo prądem granicznym. Tak samo wobec pewnej, dostatecznie wielkiej odległości między talerzami kondensatora prąd nie zmienia się wcale z dalszymi zmianami tej odległości. Prąd otrzymany w powyższych warunkach, z dodatkiem, że kondensator pozostaje w powietrzu pod ciśnieniem atmosferycznym, był w doświadczeniach moich używany do mierzenia promieniotwórczości.

Dla przykładu podaję krzywe wyobrażające natężenie prądu w funkcji pola średniego, wytworzonego pomiędzy talerzami kondensatora, wobec dwu różnych odległości tych talerzy między sobą. Talerz B był pokryty cienką warstewką sproszkowanego uranu metalicznego; talerz A, połączony z elektrometrem, był zaopatrzony w pierścień ochronny.

Figura 2 wskazuje, że natężenie prądu osiąga wielkość stałą wobec znacznych różnic potencjału na dwu talerzach. Figura 3 przedstawia też same krzywe w innej skali i zawiera wyłącznie rezultaty, odnoszące się do małych różnic potencjału. Początek krzywej jest linią prostą; iloraz z natężenia prądu przez różnicę potencjału jest wielkością stałą dla napięć słabych i przedstawia przewodnictwo początkowe między talerzami. Możemy tedy odróżniać dwie ważne staje charakterystyczne zjawiska uważanego: 1. przewodnictwo początkowe w przypadku małych różnic potencjału; 2. prąd graniczny w przypadku wielkich różnic potencjału. Prąd graniczny został przyjęty zamiarę promieniotwórczości.

Obok różnicy potencjału, którą wywołujemy pomiędzy talerzami kondensatora, istnieje nadto pomiędzy nimi siła elektrobodźcza zetknięcia, a wyniki tych dwu źródeł prądu dodają się do siebie. Z tego powodu wartość bezwzględna natężenia prądu zmienia się razem ze znakiem różnicy potencjału zewnętrznego. W każdym jednak razie wobec wielkich różnic potencjału skutki siły elektrobodźczej zetknięcia mogą być pominięte, a natężenie prądu jest wtedy jednakowe bez względu na znak pola pomiędzy talerzami.

Badania nad przewodnictwem powietrza i innych gazów, poddanych wpływowi promieni Becquerela, były dokonane przez wielu fizyków. Studium bardzo szczegółowe nad tym przedmiotem zostało ogłoszone przez p. Rutherforda.

Prawa przewodnictwa, wywołanego w gazach przez promienie Becquerela, są takież same, jak prawa znalezione dla odpowiedniego działania promieni Röntgena. Mechanizm zjawiska, o ile się zdaje, w obu razach jest jednakowy. Teoria jonizacji gazów przez promienie czy to röntgenowskie, czy becquerelowskie doskonale objaśnia zjawiska dostrzegane. Teorii tej wykładać tutaj nie będę, przypomnę tylko wnioski, do których ona prowadzi:

1. Liczba jonów wytworzonych w gazie w ciągu sekundy jest uważana za proporcjonalną do pochłoniętej przez gaz energii promieniowania.

2. Dla otrzymania prądu granicznego, odpowiadającego danemu promieniowaniu, należy, z jednej strony, doprowadzić do całkowitego pochłonięcia przez gaz energii promieniowania, a to przez użycie masy pochłaniającej odpowiednio wielkiej; z drugiej strony, do wytworzenia prądu należy zużytkować wszystkie wydzielone jony, wywołując pole elektryczne o tyle silne, ażeby liczba jonów, łączących się na powrót, była nieznaczną częścią liczby całkowitej jonów wydzielonych w tym samym czasie, które prawie wszystkie zostają przez prąd porwane i doprowadzone do elektrod. Pole elektryczne, niezbędne do otrzymania takiego wyniku, musi być tym silniejsze, im jonizacja jest znaczniejsza.

Według świeżych poszukiwań p. Townsenda zjawisko staje się bardziej złożonym, gdy ciśnienie gazu jest niskie. Zdaje się, że wtedy prąd zrazu dąży do wartości granicznej stałej w miarę wzrastania różnicy potencjału, ale, począwszy od pewnej wielkości tej różnicy, prąd zaczyna znowu wzrastać razem z polem i to z szybkością bardzo znaczną. P. Townsend przyjmuje, że ten przyrost zależy od nowej jonizacji, spowodowanej przez same jony, gdy one, pod wpływem pola elektrycznego nabędą szybkości wystarczającej do tego, ażeby cząsteczka gazu, znajdująca się na drodze takiego pocisku, została przez jego uderzenie zdruzgotana i rozbita na swoje jony. Pole elektryczne silne obok ciśnienia słabego dopomagają jonizacji przez jony już istniejące i w chwili, kiedy jonizacja taka sięrozpoczyna, natężenie prądu zwiększa się statecznie wraz z siłą pola pomiędzy talerzami kondensatora. Prąd graniczny może zatem być otrzymany tylko w tym razie, kiedy wpływy jonizujące nie przekraczają pewnej wielkości; inaczej mówiąc, prąd taki odpowiada polom, które jeszcze nie mogą dawać początku jonizacji gazu wywołanej przez uderzenia jonów. Ten warunek był właśnie zachowywany w moich doświadczeniach.

Porządek wielkości prądów nasyconych, otrzymywanych ze związkami uranu, wyraża się przez 10--11 amperów, kiedy talerze kondensatora mają średnicę 8 cm, a odległość między nimi wynosi 3 cm. Związki torowe wytwarzają prądy tegoż samego porządku wielkości i aktywność tlenków uranowych i torowych jest bardzo zbliżona.

Radioaktywność związków uranowych i torowych. — Z rozmaitymi związkami uranu otrzymałam liczby, które podaję niżej; przez i oznaczam natężenie prądu w amperach.

Grubość użytej warstwy związku uranowego wywiera wpływ niewielki, z warunkiem, żeby ta warstwa była ciągła. Oto kilka doświadczeń w tym względzie:

Stąd możemy wyprowadzić wniosek, że pochłanianie promieni uranowych przez ciała, które je wysyłają, jest bardzo silne, ponieważ promienie pochodzące z warstw głębszych nie wywierają na pomiar ważniejszego wpływu.

Liczby otrzymane z doświadczeń ze związkami torowymi pozwoliły mi stwierdzić:

1. że grubość użytej warstwy ma wpływ znaczny, szczególniej w przypadku tlenku torowego;

2. że zjawisko przebiega prawidłowo tylko w tym razie, kiedy użyto cienkiej warstwy działającej (np. 0,25 mm). Przeciwnie, kiedy warstwa jest gruba (6 mm), liczby otrzymane wahają się w granicach szerokich, szczególniej dla tlenku:

Istnieje więc w naturze zjawiska przyczyna nieprawidłowości, jakiej nie ma w przypadku związków uranowych. Liczby otrzymane z warstwą tlenku toru grubą na 6 mm wahają się pomiędzy 3,7 a 7,3.

Doświadczenia, które przeprowadziłam nad pochłanianiem promieni uranowych i torowych, dowiodły, że promienie torowe są bardziej przenikliwe od uranowych, i że promienie wysyłane przez tlenek toru użyty w warstewce grubszej przenikają silniej niż promienie pochodzące od warstewki cieńszej. Oto, na przykład, liczby przedstawiające ułamek promieniowania,jaki przepuszcza blaszka glinowa, gruba na 0,01 mm.

W doświadczeniach ze związkami uranu okazuje się, że pochłanianie jest zawsze jednakowe, niezależnie od tego, jaki mianowicie związek zostanie użyty; stąd wnioskować należy, że promienie wysyłane przez związki różne są jednakiej natury.

Odrębności promieniowania torowego były przedmiotem komunikatów bardzo szczegółowych. P. Owens wykazał, że tutaj stałość prądu otrzymuje się dopiero po upływie dość znacznego czasu i tylko w przyrządzie zamkniętym, a natężenie prądu zmniejsza się bardzo pod wpływem strumienia powietrza, czego nie mamy dla związków uranowych. P. Rutherford powtarzał doświadczenia podobne i objaśnia je przez przypuszczenie, że tor i jego związki wydzielają nie tylko promienie Becquerela, lecz nadto jeszcze i emanację, składającą się z cząstek niesłychanie małych, która zatrzymuje w sobie radioaktywność w ciągu pewnego czasu, a może być unoszona przez strumień powietrza

Właściwości promieniowania torowego, które zależą od wpływu grubości użytej warstwy i działania strumienia powietrza, okazują wielostronny związek ze zjawiskiem radioaktywności wzbudzonej i jej rozprzestrzeniania się z miejsca na miejsce. Zjawisko to po raz pierwszy było zauważone na radzie i będzie opisane poniżej.

Promieniotwórczość związków uranu i toru przedstawia się jako własność atomowa. Już p. Becquerel stwierdził, że wszystkie związki uranowe są aktywne i zawnioskował, że ich aktywność jest spowodowana przez obecność w ich składzie pierwiastku uranu; dowiódł także, że sam uran jest bardziej aktywny niż jego sole. Badałam w tym względzie związki uranowe i torowe i wykonałam znaczną liczbę pomiarów ich aktywności w rozmaitych warunkach. Z całości tych pomiarów okazuje się, że radioaktywność tych ciał jest rzeczywiście własnością atomową. Wydaje się, że tutaj jest ona związana z obecnością atomów dwu pierwiastków rozważanych i nie bywa niweczona ani przez zmiany stanu fizycznego, ani przez przemiany chemiczne.Związki chemiczne i mieszaniny zawierające w sobie uran lub tor są o tyle bardziej aktywne, o ile stosunek znajdujących się w ich składzie owych metali jest większy. Każda przymieszka nieczynna działa jako materia obojętna i zarazem — jako ciało pochłaniające promieniowanie.

Czy radioaktywność atomowa jest zjawiskiem powszechnym? — Jak już było mówione poprzednio, badałam, czy inne ciała oprócz związków uranu są radioaktywne. Przedsięwzięłam to poszukiwanie z przekonaniem, że mało podobnym do prawdy wydaje się przypuszczenie, ażeby promieniotwórczość, uważana jako własność atomu, miała być własnością pewnego rodzaju materii z wyłączeniem wszystkich innych jej rodzajów. Pomiary dokonane przeze mnie uprawniają mnie do twierdzenia, że związki pierwiastków chemicznych obecnie za takie uznawanych, rozumiejąc w ich liczbie najrzadsze i najbardziej nawet hipotetyczne, zbadane przeze mnie, wykazywały wszystkie w mym przyrządzie aktywność co najmniej sto razy słabszą niż uran metaliczny. Mając do czynienia z ciałami bardziej rozpowszechnionymi, badałam liczne ich związki; w przypadku ciał rzadkich musiałam poprzestawać na tych, w jakie udawało mi się zaopatrzyć.

Do doświadczeń swoich wciągnęłam pod postacią pierwiastków lub związków ciała następujące:

1. Wszystkie metale i niemetale pospolitsze i niektóre rzadsze, w stanie czystym, wchodzące w skład zbioru p. Etarda w Szkole Fizyki i Chemii Przemysłowej miasta Paryża;

2. Następujące ciała rzadkie: gal, german, neodym, prazeodym, niob, skand, gadolin, erb, samar, rubid (okazy użyczone przez p. Demarçay'a), yttr, yterb, erb „nowy” (okazy użyczone przez p. Urbaina;

3. Znaczną liczbę skał i minerałów.

W granicach czułości mojego przyrządu nie znalazło się ani jedno ciało proste, które by posiadało promieniotwórczość atomową, z wyjątkiem uranu i toru. Należy jednak wspomnieć pokrótce o pewnej okoliczności, odnoszącej się do fosforu. Fosfor biały zwilżony, umieszczony pomiędzy talerzami kondensatora, nadaje powietrzu zawartemu między tymi talerzami własność przewodzenia. Ciała tego jednak nie uważam za radioaktywne na wzór uranu lub toru. Fosfor, w rzeczy samej, w warunkach przytoczonych utlenia się i wytwarza światło, gdy tymczasem związki uranowe i torowe są aktywne, jakkolwiek nie doświadczają żadnej zmiany chemicznej, dającej się dostrzec za pomocą środków znanych. Co więcej, fosfor nie jest aktywny ani w odmianie czerwonej, ani w swych związkach.

W rozprawie niedawno ogłoszonej p. Bloch wykazuje, że fosfor, utleniając się w powietrzu, daje początek jonom bardzo słabo ruchliwym i wywołującym zgęszczanie się pary wodnej.

Uran i tor są to dwa pierwiastki, które posiadają najwyższe ciężary atomowe (240 i 232); często spotykamy je w jednych i tych samych minerałach.

Minerały radioaktywne. — Zbadałam w swoim przyrządzie znaczną liczbę minerałów; niektóre spomiędzy nich wykazały aktywność, szczególniej blenda smolista, chalkolit, autunit, monacyt, toryt, oranżyt, fergusonit, kleweit itd. W tabliczce poniższej i przedstawia wyrażone w amperach natężenie prądu, otrzymane z uranem i z różnymi minerałami:

Prąd wytwarzający się za użyciem oranżytu (minerał zawierający tlenek toru) zmieniał się bardzo w zależności od grubości warstwy minerału. Zmieniając tę grubość od 0,25 mm do 6 mm, otrzymano prąd od 1,8 do 2,3.

Wszystkie minerały, które się okazały promieniotwórczymi, zawierają tor lub uran; aktywność ich była oczekiwana, lecz natężenie zjawiska dla niektórych minerałów wydało się nam zdumiewającem. Tak, znaleziono blendy smoliste (minerały zawierające tlenek uranu) cztery razy bardziej aktywne od uranu metalicznego. Chalkolit (fosforan miedziowo-uranowy krystaliczny) jest dwa razy bardziej aktywny od uranu metalicznego. Autunit (fosforan uranowo-wapniowy) jest równie aktywny jak uran. Fakty te nie zgadzają się z uwagami poprzednimi, według których żaden minerał nie powinien był się okazać bardziej aktywnym od uranu i toru.

Ażeby ten punkt wyjaśnić, przygotowałam chalkolit sztuczny według sposobu Debray'a, wychodząc z materiałów pierwotnych czystych. Metoda polega na zmieszaniu roztworu azotanu uranylowego z roztworem fosforanu miedzi w kwasie fosforowym i ogrzaniu mieszaniny do 50 lub 60°. Po upływie pewnego czasu w cieczy tworzą się kryształy chalkolitu. W taki sposób wytworzony chalkolit posiada aktywność zupełnie normalną, jeżeli uwzględnimy skład jego: jest on półtrzecia raza mniej aktywny od uranu.

Od tej chwili stało się rzeczą bardzo prawdopodobną, że tak wysoka aktywność blendy smolistej, chalkolitu, autunitu zależy od zawartości w tych ciałach małej ilości substancji bardzo silnie promieniotwórczej, odmiennej od uranu, toru i w ogóle od pierwiastków poprzednio znanych. Wydało mi się, że o ile tak jest w istocie, mogę mieć nadzieję wydobycia z minerału tego ciała za pomocą postępowania zwyczajnego analizy chemicznej.

Rozdział II.Nowe substancje radioaktywne

Metoda poszukiwań. Rezultaty studyów nad minerałami radioaktywnymi, przytoczone w rozdziale poprzednim, zniewoliły p. Curie i mnie do podjęcia poszukiwań w celu wydzielenia z blendy smolistej nowej substancji promieniotwórczej. Metodę naszych badań mogliśmy oprzeć tylko na radioaktywności, gdyż nie znaliśmy żadnej innej własności szukanego ciała hipotetycznego. Promieniotwórczość może być pomocna w badaniach tego rodzaju w sposób następujący: Mierzy się radioaktywność danego produktu, oddziela od siebie jego części składowe według metod analizy chemicznej, mierzy następnie radioaktywność każdego z otrzymanych składników i wreszcie z wyniku pomiarów wnioskuje, czy szukana substancja promieniotwórcza stanowi część integralną jednego tylko ze składników, czy też rozdziela się pomiędzy nie wszystkie i w jakim stosunku. Osiąga się w ten sposób wskazówkę, którą można by do pewnego stopnia porównać z wynikami analizy widmowej. Chcąc na tej drodze otrzymać liczby porównawcze, należy do pomiarów radioaktywności używać substancji w stanie stałym i dobrze wysuszonych.

Polon, rad, aktyn. Analiza blendy smolistej, dokonana na podstawie metody wskazanej powyżej, pozwoliła nam wykazać w tym mineraleobecność dwu substancji silnie radioaktywnych: polonu (,,polonium”), wykrytego przez nas, i radu (,,radium”), który odkryliśmy ze współudziałem p. Bémonta.

Pod względem zachowania się wobec metod analizy, polon przedstawia ciało zbliżone do bizmutu, towarzysząc mu w rezultatach oddzielania. Bizmut, coraz to bogatszy w polon, można otrzymać za pomocą jednego z następujących sposobów:

1. Przez sublimację siarczków w próżni; siarczek zawierający ciało radioaktywne jest lotniejszy niż siarczek bizmutu czystego.

2. Przez strącanie wodą z roztworów w kwasie azotowym; strącony zasadowy azotan bizmutu jest znacznie aktywniejszy niż sól pozostała w roztworze.

3. Przez strącanie siarkowodorem z roztworów w kwasie solnym, bardzo silnie kwaśnych; strącane siarczki są daleko bardziej aktywne niż sól pozostała w roztworze.

Rad jest ciałem, które towarzyszy barowi podczas oddzielania tego pierwiastku od reszty składników blendy smolistej; dzieli on z barem jego reakcje chemiczne i daje się od baru oddzielić na podstawie różnej rozpuszczalności chlorków w wodzie czystej, w wodzie z dodatkiem alkoholu lub zakwaszonej kwasem solnym. Oddzielanie chlorków baru i radu uskuteczniamy przez poddanie ich mieszaniny krystalizacji cząstkowej; chlorek radu jest mianowicie mniej rozpuszczalny od chlorku barowego.

Trzecie ciało o silnej radioaktywności wykazał w blendzie smolistej p. Debierne, który nadał mu nazwę aktyn (,,actinium”). Aktyn towarzyszy w blendzie smolistej niektórym pierwiastkom z grupy żelaza; jak się zdaje, zbliża się on przede wszystkim do toru, od którego nie można go było jeszcze dotychczas oddzielić. Ekstrakcja aktynu z blendy smolistej jest operacją bardzo żmudną ze względu na trudność zupełnego oddzielenia tego ciała.

Wszystkie trzy nowe substancje promieniotwórcze znajdują się w blendzie smolistej w ilości minimalnej. Aby otrzymać je w stanie stężonym, byliśmy zmuszeni przedsięwziąć przerób wielu ton odpadków minerału uranowego. Przerabianie na wielką skalę trzeba było uskutecznić na sposób fabryczny; jest ono związane z wielkim nakładem pracy, polegającej na oczyszczaniu i stężaniu. Z całych tysięcy kilogramów materiału podstawowego zdołaliśmy wyciągnąć kilka decygramów produktów, które są nadzwyczaj czynne w porównaniu z samym minerałem macierzystym. Oczywiście, że cała ta praca jest długa, mozolna i kosztowna

W następstwie naszych badań ukazały się wzmianki o innych jeszcze, nowych substancjach radioaktywnych. Giesel z jednej, a Hoffmann i Strauss z drugiej strony zaznaczyli prawdopodobieństwo istnienia pewnej substancji promieniotwórczej, zbliżonej do ołowiu przez swe własności chemiczne. O substancji tej istnieją dotychczas szczupłe tylko wiadomości.

Wśród wszystkich nowych substancji promieniotwórczych dotychczas jeden tylko rad został wydzielony w stanie soli czystej.

Widmo radu. Było rzeczą pierwszorzędnej wagi sprawdzić, za pomocą wszelkich środków dostępnych, podane przez nas w pracy niniejszejprzypuszczenie co do istnienia nowych pierwiastków promieniotwórczych. Co dotyczy radu, przypuszczenie to zostało jak najzupełniej stwierdzone za pomocą analizy widmowej.

Badaniem nowych substancji radioaktywnych raczył się zająć p. Demarçay, stosując tutaj ścisłą metodę, którą posługiwał się w swych studiach nad fotografowanymi widmami iskry.

Współpracownictwo tak kompetentnego uczonego było dla nas wielkim dobrodziejstwem, toteż żywimy głęboką wdzięczność względem tego badacza za przyjęcie na swe barki tej pracy. Wyniki analizy widmowej upewniły nas właśnie wtedy, gdy mieliśmy jeszcze pewne wątpliwości do sposobu interpretacji rezultatów naszych poszukiwań.

Pierwsze próbki chlorku baru promieniotwórczego o średniej aktywności, zbadane przez Demarçay'a, okazały w widmie ultrafioletowym, obok linij baru, linię nową o znacznym natężeniu i długości fali λ = 381,47 mμ. Pozastosowaniu produktów bardziej aktywnych, Demarçay spostrzegł, że linia fali λ = 381,47 mμ stała się silniejszą; równocześnie wystąpiły inne linie nowe, a linie te i linie baru posiadały w widmie natężenia dające się porównywać. Przez dalszą koncentrację otrzymano wreszcie produkt, w którego widmie przeważają linie nowe, podczas gdy z linij baru tylko trzy najsilniejsze są widzialne, świadcząc jedynie o obecności tego metalu jako zanieczyszczenia. Produkt ten można już uważać za prawie czysty chlorek radu. Na koniec, przez dalsze oczyszczanie, zdołałam przygotować chlorek nadzwyczaj czysty, w którego widmie dwie główne linie baru są zaledwo widoczne.

Oto, według Demarçay'a, tablica głównych linij radu, odnosząca się do części widma w granicach między λ — 500,0 a λ — 350,0 tysiącznych mikrona (mμ). Natężenie każdej linii jest tu wyrażone liczbą; dla linii najsilniejszej oznaczono ją liczbą 16.

Wszystkie linie są czyste i wąskie; trzy linie 381,47; 468,30; 434,06 są silne. Dorównywają one najsilniejszym liniom znanym dotychczas. W widmie dają się również zauważyć dwa wydatne pasma mgliste. Pierwsze, symetryczne, rozciąga się w granicach od 463,10 do 432,19 z maximum w 462,75. Drugie, silniejsze blednieje ze strony ultrafioletu; poczyna się ono raptownie od 446,37 i osiąga maksimum przy 445,52; maximum to dochodzi do 445,34, po czym pasmo mgliste, stopniowo blednąc, sięga aż do 439.

W części najmniej łamliwej widma iskrowego niefotografowanej, jedynym prążkiem znaczniejszym jest 566,5 (około), który jednak jest znacznie słabszy od linii 482,63.

Wygląd ogólny widma jest taki sam, jak metali ziem alkalicznych; wiadomo, że metale te wykazują widma o liniach silnych z kilku pasmami mglistymi.

Przeczytałeś bezpłatny fragment.
Kup książkę, aby przeczytać do końca.